Fundamentals of Plasticity in Geomechanics

S. Pietruszczak

McMaster University, Hamilton, Ontario, Canada

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group Boca Raton London New York Leiden

(164) 978-0-413-58516-3 (Hok)

SBN: 978-0-201-83633-0 (whole)

C	on	tent	Volumetric hardering extended on every dire zoneorden log	
-		cent	3.2.1 Formulation in the Integral, (A) of space of the material	
2.2		223	Combined volumetric deviatoric hardening acceleration	P.6155
	Prot			iv
	170	uce		IX
I	Basi	ic conc	epts of the theory of plasticity	L. Con
	1.1	Typica	al approximations of uniaxial response of materials	1
	1.2	The n	otion of generalized vield/failure criterion	3
	1.3	Gener	alization of the concepts of perfectly plastic	
		and st	rain-hardening material	4
	1.4	Deteri	mination of plastic strain; deformation and flow	
		theori	es of plasticity	9
	1.5	Review	w of fundamental postulates of plasticity; uniqueness	
		of the	solution	12
2	Elas	tic-per	fectly plastic formulations	19
	21	Conor	al considerations	19
	2.1	Gener	etric representation of the failure surface	20
	2.2	Selecti	ion of stress invariants for the mathematical description	21
	2.5	Failur	e criteria for geomaterials	23
	2.1	241	Mohr-Coulomb failure criterion	23
		2.1.1	Drucker-Prager and other derivative criteria	26
		2.4.2	Modified criteria based on smooth approximations	20
		2.1.0	to Mohr-Coulomb envelope	28
		244	Non-linear approximations in meridional sections	30
	25	Deriva	ation of constitutive relation	33
	2.0	2 5 1	Matrix formulation	35
	2.6	Conse	quences of a non-associated flow rule	37
2	last	vonie st	5.4.1 Statement of algorithmic problem	20
3	1500	opic si		37
	3.1	'Triax	ial' tests and their mathematical representation	39
		3.1.1	Mohr-Coulomb criterion in 'triaxial' space	40
		3.1.2	On the behaviour of a perfectly plastic	
			Mohr-Coulomb material	42
		3.1.3	Review of typical mechanical characteristics of	5.8
			granular materials	44

vi Contents

	3.2	Volumetric hardening; Critical State model 3.2.1 Formulation in the 'triaxial' $\{p,q\}$ space	47 47
		3.2.2 Comments on the performance	52
		5.2.5 Generalization and specification of the constitutiv	55
	3.3	Deviatoric hardening model	56
	0.0	3.3.1 Formulation in the 'triaxial' $\{p, q\}$ space	56
		3.3.2 Comments on the performance	59
		3.3.3 Generalization and specification of the constitutiv	7e 62
	3.4	Combined volumetric-deviatoric hardening	63
	3.5	Specification of constitutive matrix under undrained	
		conditions	67
4	Con	nbined isotropic-kinematic hardening rules	69
	4.1	Bounding surface plasticity; volumetric hardening frame-	work 69
		4.1.1 Formulation in the 'triaxial' $\{p,q\}$ space	70
		4.1.2 Comments on the performance	74
		4.1.3 Generalization and specification of the constitution	ve
	10	matrix	/6
	4.2	Bounding surface plasticity; deviatoric hardening framew	70rk /8
		4.2.1 Formulation in the triaxial $\{P, Q\}$ space	to wairo 1 19
		4.2.2 Comments on the performance	ve sditto
		matrix	86
5	Nun	nerical integration of constitutive relations	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	5.1	Euler's integration schemes	91
	5.2	Numerical integration of $\{p, q\}$ formulation	92
		5.2.1 Stress-controlled scheme	93
		5.2.2 Strain-controlled schemes	93
	5.3	Numerical examples of integration in $\{p, q\}$ space	95
		5.3.1 Critical state model; drained $p = const.$ compress	ion 95
		5.3.2 Deviatoric hardening model; drained 'triaxial'	0.0
		compression	98
		5.3.3 Deviatoric hardening model; undrained triaxial	80
	54	General methods for numerical integration	104
	5.1	5.4.1 Statement of algorithmic problem	105
		5.4.2 Notion of closest point projection	106
		5.4.3 Return-mapping algorithms	108
6	Intr	oduction to limit analysis	113
	6.1	Formulation of lower and upper bound theorems	113
	6.2	Examples of applications of limit theorems in geotechnic	al
		engineering	118

2				100
	7.1	Form	ilation of anisotropic failure criteria	133
		7.1.1	Specification of failure criteria based on critical	121
			plane approach	134
		7.1.2	Formulation of failure criteria incorporating	
			a microstructure tensor	144
	7.2	Descri	ption of inelastic deformation process	151
		7.2.1	Plasticity formulation for critical plane approach	151
		7.2.2	Plasticity formulation incorporating a microstructure	
			tensor	153
		7.2.3	Numerical examples	155
	8.1	Basic	mechanical characteristics in monotonic tests under	
		draine 8 1 1	ed conditions	158
		draine 8.1.1 8.1.2	ed conditions Influence of confining pressure; compaction/dilatancy Influence of Lode's angle and the phenomenon of strain	158 158
	8.2	draine 8.1.1 8.1.2 Undra	ed conditions Influence of confining pressure; compaction/dilatancy Influence of Lode's angle and the phenomenon of strain localization ined response of granular media; pore pressure	158 158 164
	8.2	draine 8.1.1 8.1.2 Undra evolut	ed conditions Influence of confining pressure; compaction/dilatancy Influence of Lode's angle and the phenomenon of strain localization ined response of granular media; pore pressure ion, liquefaction	158 158 164 168
	8.2 8.3	draine 8.1.1 8.1.2 Undra evolut Basic	ed conditions Influence of confining pressure; compaction/dilatancy Influence of Lode's angle and the phenomenon of strain localization ined response of granular media; pore pressure ion, liquefaction mechanical characteristics in cyclic tests; hysteresis	158 158 164 168
	8.2 8.3	draine 8.1.1 8.1.2 Undra evolut Basic and lie	ed conditions Influence of confining pressure; compaction/dilatancy Influence of Lode's angle and the phenomenon of strain localization ined response of granular media; pore pressure ion, liquefaction mechanical characteristics in cyclic tests; hysteresis quefaction	158 158 164 168 172
	8.2 8.3 8.4	draine 8.1.1 8.1.2 Undra evolut Basic and lie Inhere	ed conditions Influence of confining pressure; compaction/dilatancy Influence of Lode's angle and the phenomenon of strain localization ined response of granular media; pore pressure ion, liquefaction mechanical characteristics in cyclic tests; hysteresis quefaction ent anisotropy; strength characteristics of sedimentary rocks	158 158 164 168 172 177
	8.2 8.3 8.4 8.5	draine 8.1.1 8.1.2 Undra evolut Basic and liu Inhere Identi	ed conditions Influence of confining pressure; compaction/dilatancy Influence of Lode's angle and the phenomenon of strain localization ined response of granular media; pore pressure ion, liquefaction mechanical characteristics in cyclic tests; hysteresis quefaction ent anisotropy; strength characteristics of sedimentary rocks fication of basic material parameters for soils/rocks	158 158 164 168 172 177 179
	8.2 8.3 8.4 8.5	draine 8.1.1 8.1.2 Undra evolut Basic and liu Inhere Identi 8.5.1	ed conditions Influence of confining pressure; compaction/dilatancy Influence of Lode's angle and the phenomenon of strain localization ined response of granular media; pore pressure ion, liquefaction mechanical characteristics in cyclic tests; hysteresis quefaction ent anisotropy; strength characteristics of sedimentary rocks fication of basic material parameters for soils/rocks General remarks on identification procedure	158 158 164 168 172 177 179 180
	8.2 8.3 8.4 8.5	draine 8.1.1 8.1.2 Undra evolut Basic and liu Inhere Identi 8.5.1 8.5.2	ed conditions Influence of confining pressure; compaction/dilatancy Influence of Lode's angle and the phenomenon of strain localization ined response of granular media; pore pressure ion, liquefaction mechanical characteristics in cyclic tests; hysteresis quefaction ent anisotropy; strength characteristics of sedimentary rocks fication of basic material parameters for soils/rocks General remarks on identification procedure Examples involving deviatoric hardening framework	158 158 164 168 172 177 179 180 181

Bibliography 189 Appendix: Suggested exercises 193

Contents vii